Hierarchical Models and Chart-Based Decoding

Barry Haddow
(Based on slides by Philipp Koehn and Kenneth Heafield)

12 September, 2013

Tree-Based Models

- The models we've seen so far operate on sequences of words
- Many translation problems can be best explained by pointing to syntax
- reordering, e.g., verb movement in German-English translation
- long distance agreement (e.g., subject-verb) in output
\Rightarrow Translation models based on tree representation of language
- significant ongoing research
- state-of-the art for some language pairs

Phrase Structure Grammar

- Phrase structure
- noun phrases: the big man, a house, ...
- prepositional phrases: at 5 o'clock, in Edinburgh, ...
- verb phrases: going out of business, eat chicken, ...
- adjective phrases, ...
- Context-free Grammars (CFG)
non-terminals: phrase structure labels, part-of-speech tags terminals: words
rules: rewrite non-terminal as sequence of Ts and NT
e.g. NP \rightarrow DET NN
- Probabilistic Context-free Grammars (PCFG)
- Attach probabilities to rules

Parse Tree

Phrase structure grammar tree for an English sentence (as produced Collins' parser)

Synchronous Context Free Grammar

- English rule

$$
\mathrm{NP} \rightarrow \text { DET JJ NN }
$$

- French rule

$$
\mathrm{NP} \rightarrow \text { DET NN JJ }
$$

- Synchronous rule (indices indicate alignment):

$$
\mathrm{NP} \rightarrow \mathrm{DET}_{1} \mathrm{NN}_{2} \mathrm{JJ}_{3} \mid \mathrm{DET}_{1} \mathrm{JJ}_{3} \mathrm{NN}_{2}
$$

Synchronous Grammar Rules

- Nonterminal rules

$$
\mathrm{NP} \rightarrow \mathrm{DET}_{1} \mathrm{NN}_{2} \mathrm{JJ}_{3} \mid \mathrm{DET}_{1} \mathrm{JJ}_{3} \mathrm{NN}_{2}
$$

- Terminal rules

$$
\begin{array}{r}
\mathrm{N} \rightarrow \text { maison } \mid \text { house } \\
\mathrm{NP} \rightarrow \text { la maison bleue } \mid \text { the blue house }
\end{array}
$$

- Mixed rules

$$
\mathrm{NP} \rightarrow \text { la maison } \mathrm{JJ}_{1} \mid \text { the } \mathrm{JJ}_{1} \text { house }
$$

Aligned Tree Pair

Phrase structure grammar trees with word alignment (German-English sentence pair.)

Reordering Rule

- Subtree alignment

- Synchronous grammar rule
$\mathrm{VP} \rightarrow \mathrm{PPER}_{1} \mathrm{NP}_{2}$ aushändigen \mid passing on $\mathrm{PP}_{1} \mathrm{NP}_{2}$
- Note:
- one word aushändigen mapped to two words passing on ok
- but: fully non-terminal rule not possible

Rules with Internal Structure

- Subtree alignment

- Synchronous grammar rule (stripping out English internal structure)

$$
\text { PRO/PP } \rightarrow \text { Ihnen } \mid \text { to you }
$$

- Rule with internal structure (Synchronous Tree Substitution Grammar)

Learning Synchronous Grammars

- Extract rules from a word-aligned parallel corpus
- Hierarchical phrase-based model (hiero)
- only one non-terminal symbol x
- no linguistic syntax, just a formally syntactic model
- Synchronous phrase structure model
- non-terminals for words and phrases: NP, VP, PP, ADJ, ...
- corpus must also be parsed with syntactic parser
- restrict extraction to rules compatible with parse
- string-to-tree, tree-to-string, tree-to-tree, ...

Extracting Phrase Translation Rules

Extracting Phrase Translation Rules

Extracting Phrase Translation Rules

- werde Ihnen die entsprechenden Anmerkungen aushändigen
$=$ shall be passing on to you some comments

Extracting Hierarchical Phrase Translation Rules

subtracting subphrase

- werde X aushändigen $=$ shall be passing on X

Hierarchical Rule extraction

- All phrase-pairs licensed by PBMT heuristics
- Recursively add hierarchical rules
- So if we have:

$$
\mathrm{X} \rightarrow \text { abc } \mid \text { pqrs } \quad \mathrm{X} \rightarrow \mathrm{~b} \mid \mathrm{qr}
$$

- We can add:

$$
\mathrm{X} \rightarrow \mathrm{aXc} \mid \mathrm{pXs}
$$

- Continue until no more rules can be added
- Rule probabilities derived from frequencies
- Syntax-based models require non-terminals to be constituents

Hiero Extraction in Practice

- Removal of multiple sub-phrases leads to rules with multiple non-terminals, such as:

$$
\mathrm{Y} \rightarrow \mathrm{X}_{1} \mathrm{X}_{2} \mid \mathrm{X}_{2} \text { of } \mathrm{x}_{1}
$$

- Typical restrictions to limit complexity
- at most 2 nonterminal symbols
- at least 1 but at most 5 words per language
- span at most 15 words (counting gaps)
- Size of europarl-derived fr-en rule table:
- PB: 100M Hiero: 800M

Overview of Syntactic Decoding

Overview of Syntactic Decoding

Syntactic Decoding

Inspired by monolingual syntactic chart parsing:
During decoding of the source sentence, a chart with translations for the $O\left(n^{2}\right)$ spans has to be filled

Syntax Decoding

German input sentence with tree

Syntax Decoding

Purely lexical rule: filling a span with a translation (a constituent)

Syntax Decoding

Purely lexical rule: filling a span with a translation (a constituent)

Syntax Decoding

Purely lexical rule: filling a span with a translation (a constituent)

Syntax Decoding

Complex rule: matching underlying constituent spans, and covering words

Syntax Decoding

Complex rule with reordering

Syntax Decoding

Bottom-Up Decoding

- For each span, a stack of (partial) translations is maintained
- Bottom-up: a higher stack is filled, once underlying stacks are complete

Chart Organization

- Chart consists of cells that cover continuous spans over the input sentence
- Each cell contains a set of hypotheses
- Hypothesis $=$ translation of span with target-side constituent

Naive Algorithm

Input: Foreign sentence $\mathbf{f}=f_{1}, \ldots f_{l_{f}}$, with syntax tree
Output: English translation e
1: for all spans [start,end] (bottom up) do
2: for all sequences s of hypotheses and words in span [start,end] do
3: for all rules r do
4: \quad if rule r applies to chart sequence s then
5: create new hypothesis c
6: add hypothesis c to chart
7: end if
8: end for
9: end for
10: end for
11: return English translation \mathbf{e} from best hypothesis in span $\left[0, l_{f}\right]$

Naive Algorithm

Input: Foreign sentence $\mathbf{f}=f_{1}, \ldots f_{l_{f}}$, with syntax tree
Output: English translation e
1: for all spans [start,end] (bottom up) do

$2:$	for all sequences s of hypotheses and words in span [start,end] do

3: \quad for all rules r do
4: \quad if rule r applies to chart sequence s then create new hypothesis c add hypothesis c to chart end if
end for
9: end for
10: end for
11: return English translation \mathbf{e} from best hypothesis in span $\left[0, I_{f}\right]$

Naive Algorithm

Input: Foreign sentence $\mathbf{f}=f_{1}, \ldots f_{l_{f}}$, with syntax tree
Output: English translation e
1: for all spans [start,end] (bottom up) do
2: for all sequences s of hypotheses and words in span [start,end] do
3: \quad for all rules r do
4:
5:
6:
7: end if
8: end for
9: end for
10: end for
11: return English translation \mathbf{e} from best hypothesis in span $\left[0, I_{f}\right]$

Naive Algorithm

Input: Foreign sentence $\mathbf{f}=f_{1}, \ldots f_{l_{f}}$, with syntax tree
Output: English translation e
1: for all spans [start,end] (bottom up) do
2: for all sequences s of hypotheses and words in span [start,end] do
3: \quad for all rules r do
4:
5:
6:
7 :
8: end for
9: end for
10: end for
11: return English translation e from best hypothesis in span $\left[0, I_{f}\right]$

Naive Algorithm

Input: Foreign sentence $\mathbf{f}=f_{1}, \ldots f_{l_{f}}$, with syntax tree
Output: English translation e
1: for all spans [start,end] (bottom up) do
2: for all sequences s of hypotheses and words in span [start,end] do
3: for all rules r do
4:
if rule r applies to chart sequence s then create new hypothesis c add hypothesis c to chart end if
end for
9: end for
10: end for
11: return English translation e from best hypothesis in span $\left[0, I_{f}\right]$

Solutions

- Recombination
- Stack Pruning
- Prefix tree and Dotted Rules
- Cube pruning

Dynamic Programming

Rule application creates new hypothesis

Dynamic Programming

Another hypothesis

Both hypotheses are indistiguishable in future search \rightarrow can be recombined

Recombinable States

Recombinable?

Recombinable States

Recombinable?

Yes, if max. 2-gram language model is used

Recombinability

Hypotheses have to match in

- span of input words covered
- output constituent label
- first $n-1$ output words not properly scored, since they lack context
- last $n-1$ output words
still affect scoring of subsequently added words, just like in phrase-based decoding
(n is the order of the n-gram language model)

Stack Pruning

- Number of hypotheses in each chart cell explodes
\rightarrow Only keep a fixed number
- Different stacks for different output constituent labels?
- Cost estimates
- translation model cost known
- language model cost for internal words known
\rightarrow estimates for initial words
- outside cost estimate?
(predict how useful constituent will be later on)

Storing Rules

- Need to quickly check which rules apply \rightarrow match to available hypotheses and input words
- Example rule

$$
\mathrm{NP} \rightarrow \mathrm{X}_{1} \operatorname{des} \mathrm{X}_{2} \mid \mathrm{NP}_{1} \text { of the } \mathrm{NN}_{2}
$$

- Check for applicability
- Subspan with constituent label NP?
- Input word des?
- Subspan nn?
- Does it apply? - check this sequence:
$\mathrm{NP} \bullet$ des $\bullet \mathrm{NN} \bullet \mathrm{NP}_{1}$ of the NN_{2}
- Use Prefix Tree \rightarrow can check many rules at once

Prefix Tree for Rules

Highlighted Rules

$$
\begin{aligned}
& \mathrm{NP} \rightarrow \mathrm{NP}_{1} \mathrm{DET}_{2} \mathrm{NN}_{3} \mid \mathrm{NP}_{1} \mathrm{IN}_{2} \mathrm{NN}_{3} \\
& \mathrm{NP} \rightarrow \mathrm{NP}_{1} \mid \mathrm{NP}_{1} \\
& \mathrm{NP} \rightarrow \mathrm{NP}_{1} \text { des } \mathrm{NN}_{2} \mid \mathrm{NP}_{1} \text { of the } \mathrm{NN}_{2} \\
& \mathrm{NP} \rightarrow \mathrm{NP}_{1} \text { des } \mathrm{NN}_{2} \mid \mathrm{NP}_{2} \mathrm{NP}_{1} \\
& \mathrm{NP} \rightarrow \mathrm{DET}_{1} \mathrm{NN}_{2} \mid \mathrm{DET}_{1} \mathrm{NN}_{2} \\
& \text { NP } \rightarrow \text { das Haus | the house }
\end{aligned}
$$

Optimising Lookups - Dotted Rules

- If we are trying to match a rule like

$$
\mathrm{p} \rightarrow \mathrm{ABC} \mid \mathrm{x}
$$

... then it helps if we already matched A B to a subspan.

- So store partial matches of the prefix tree
- These are known as Dotted Rules

A B •

Where are we now?

- Avoid creating hypotheses that cannot be optimal
- Using recombination
- Only keep best scoring hypothesis in each cell
- Stack pruning
- Efficiently organise rules for lookup
- Prefix tree and dotted rules

Where are we now?

- Avoid creating hypotheses that cannot be optimal
- Using recombination
- Only keep best scoring hypothesis in each cell
- Stack pruning
- Efficiently organise rules for lookup
- Prefix tree and dotted rules
- But LM lookup makes hypothesis combination so slow!
$\rightarrow p($ saw \mid the man $) \neq p($ saw $) p($ the \mid man $)$

Filling a Constituent

Naive Beam Search

	man	-3.6	the man	$-\mathbf{4 . 3}$	some men	-6.3
seen -3.8	seen man -8.8	seen the man -7.6	seen some men	-9.5		
saw -4.0	saw man -8.3	saw the man	-6.9	saw some men	-8.5	
view -4.0	view man -8.5	view the man -8.9	view some men -10.8			

Cube Pruning

man -3.6 the man -4.3 some men -6.3
seen -3.8 Queue
saw -4.0
view -4.0

Queue

Hypothesis
\rightarrow seen man

Sum
$-3.8-3.6=-7.4$

Cube Pruning

```
    man -3.6 the man -4.3 some men -6.3
seen -3.8 seen man -8.8 Queue
saw -4.0 Queue
view -4.0
```


Queue

Cube Pruning

	man	-3.6	the man -4.3	some men	-6.3
seen -3.8	seen man	-8.8	Queue		
saw -4.0	saw man	-8.3	Queue		
view -4.0	Queue				

Queue

Hypothesis	Sum
\rightarrow view man	$-4.0-3.6=-7.6$
seen the man	$-3.8-4.3=-8.1$
saw the man	$-4.0-4.3=-8.3$

Cube Pruning

	man	-3.6	the man -4.3	some men	-6.3
seen -3.8	seen man	-8.8	Queue		
saw -4.0	saw man	-8.3	Queue		
view -4.0	view man -8.5	Queue			

Queue

Cube Pruning

	man	-3.6	the man	-4.3	some men
-6.3					

Queue

Hypothesis	Sum
\rightarrow saw the man	$-4.0-4.3=-8.3$
view the man	$-4.0-4.3=-8.3$
seen some men	$-3.8-6.3=-10.1$

Cube Pruning versus Beam Search

Same Bottom-up with fixed-size beams
Different Beam filling algorithm

Cube Pruning: Speed vs. Accuracy

Many Cubes

- Could be several source-side matches for given span
- Create a cube for each one
- One queue per cube - or single queue
\rightarrow Always pop most promising hypothesis

One Stage or Two Stage Decoding

- First stage: decoding without a language model (-LM decoding)
- Can be done exhaustively
- Eliminate dead ends
- Optionably prune out low scoring hypotheses
- Second stage: add language model
- Limited to packed chart obtained in first stage
- Can do a single pass (interleaved)

Vs.

cdec does 2 passes
but Moses does 1!

Summary

- Synchronous context free grammars
- Rule extraction from aligned corpus
- Bottom-up decoding
- Chart organization: dynamic programming, stacks, pruning
- Prefix tree for rules
- Dotted rules
- Cube pruning

