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Tree-Based Models

I The models we’ve seen so far operate on sequences of words

I Many translation problems can be best explained by pointing
to syntax

I reordering, e.g., verb movement in German–English translation
I long distance agreement (e.g., subject-verb) in output

⇒ Translation models based on tree representation of language
I significant ongoing research
I state-of-the art for some language pairs



Phrase Structure Grammar

I Phrase structure
I noun phrases: the big man, a house, ...
I prepositional phrases: at 5 o’clock, in Edinburgh, ...
I verb phrases: going out of business, eat chicken, ...
I adjective phrases, ...

I Context-free Grammars (CFG)

non-terminals: phrase structure labels, part-of-speech tags
terminals: words
rules: rewrite non-terminal as sequence of Ts and NT

e.g. np → det nn

I Probabilistic Context-free Grammars (PCFG)
I Attach probabilities to rules



Parse Tree
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Phrase structure grammar tree for an English sentence
(as produced Collins’ parser)



Synchronous Context Free Grammar

I English rule

np → det jj nn

I French rule

np → det nn jj

I Synchronous rule (indices indicate alignment):

np → det1 nn2 jj3 | det1 jj3 nn2



Synchronous Grammar Rules

I Nonterminal rules

np → det1 nn2 jj3 | det1 jj3 nn2

I Terminal rules

n → maison | house

np → la maison bleue | the blue house

I Mixed rules

np → la maison jj1 | the jj1 house



Aligned Tree Pair
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(German–English sentence pair.)



Reordering Rule

I Subtree alignment

vp

pper

...

np

...

vvfin

aushändigen

↔ vp

vbg

passing

rp

on

pp

...

np

...

I Synchronous grammar rule

vp → pper1 np2 aushändigen | passing on pp1 np2
I Note:

I one word aushändigen mapped to two words passing on ok
I but: fully non-terminal rule not possible



Rules with Internal Structure

I Subtree alignment

pro

Ihnen

↔ pp

to

to

prp

you

I Synchronous grammar rule (stripping out English internal
structure)

pro/pp → Ihnen | to you

I Rule with internal structure (Synchronous Tree Substitution
Grammar)

pro/pp → Ihnen to

to

prp

you



Learning Synchronous Grammars

I Extract rules from a word-aligned parallel corpus

I Hierarchical phrase-based model (hiero)
I only one non-terminal symbol x
I no linguistic syntax, just a formally syntactic model

I Synchronous phrase structure model
I non-terminals for words and phrases: np, vp, pp, adj, ...
I corpus must also be parsed with syntactic parser
I restrict extraction to rules compatible with parse
I string-to-tree, tree-to-string, tree-to-tree, . . .
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Extracting Phrase Translation Rules
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Extracting Hierarchical Phrase Translation Rules
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Hierarchical Rule extraction

I All phrase-pairs licensed by PBMT heuristics
I Recursively add hierarchical rules

I So if we have:

X → abc | pqrs X → b | qr

I We can add:

X → aXc | pXs

I Continue until no more rules can be added

I Rule probabilities derived from frequencies

I Syntax-based models require non-terminals to be constituents



Hiero Extraction in Practice

I Removal of multiple sub-phrases leads to rules with multiple
non-terminals, such as:

y → x1 x2 | x2 of x1

I Typical restrictions to limit complexity
I at most 2 nonterminal symbols
I at least 1 but at most 5 words per language
I span at most 15 words (counting gaps)

I Size of europarl-derived fr-en rule table:
I PB: 100M Hiero: 800M
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Syntactic Decoding

Inspired by monolingual syntactic chart parsing:

During decoding of the source sentence,
a chart with translations for the O(n2) spans has to be filled

Sie
PPER

will
VAFIN

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP

VP
S



Syntax Decoding
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Syntax Decoding

Sie
PPER

will
VAFIN

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP

VP
S

PRO
she

VB
drink

➏

➊

Purely lexical rule: filling a span with a translation (a constituent)
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Bottom-Up Decoding

I For each span, a stack of (partial) translations is maintained

I Bottom-up: a higher stack is filled, once underlying stacks are
complete



Chart Organization

Sie
PPER

will
VAFIN
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NN

Kaffee
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S

I Chart consists of cells that cover continuous spans over the
input sentence

I Each cell contains a set of hypotheses
I Hypothesis = translation of span with target-side constituent



Naive Algorithm

Input: Foreign sentence f = f1, ...flf , with syntax tree
Output: English translation e

1: for all spans [start,end] (bottom up) do
2: for all sequences s of hypotheses and words in span

[start,end] do
3: for all rules r do
4: if rule r applies to chart sequence s then
5: create new hypothesis c
6: add hypothesis c to chart
7: end if
8: end for
9: end for

10: end for
11: return English translation e from best hypothesis in span [0,lf ]
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Many subspan sequences
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1: for all spans [start,end] (bottom up) do
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Checking rule application expensive



Naive Algorithm

Input: Foreign sentence f = f1, ...flf , with syntax tree
Output: English translation e

1: for all spans [start,end] (bottom up) do
2: for all sequences s of hypotheses and words in span

[start,end] do
3: for all rules r do
4: if rule r applies to chart sequence s then
5: create new hypothesis c
6: add hypothesis c to chart
7: end if
8: end for
9: end for

10: end for
11: return English translation e from best hypothesis in span [0,lf ]

Scoring rules expensive → LM



Solutions

I Recombination

I Stack Pruning

I Prefix tree and Dotted Rules

I Cube pruning



Dynamic Programming

Rule application creates new hypothesis

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP: coffee

NP+P: a cup of

NP: a cup of coffee

apply rule:
NP → NP Kaffee ; NP → NP+P coffee



Dynamic Programming

Another hypothesis

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP: coffee

NP+P: a cup of

NP: a cup of coffee

apply rule:
NP → eine Tasse NP ; NP → a cup of NP

NP: a cup of coffee

Both hypotheses are indistiguishable in future search
→ can be recombined



Recombinable States

Recombinable?

NP: a cup of coffee

NP: a cup of coffee

NP: a mug of coffee

Yes, if max. 2-gram language model is used



Recombinable States

Recombinable?

NP: a cup of coffee

NP: a cup of coffee

NP: a mug of coffee

Yes, if max. 2-gram language model is used



Recombinability

Hypotheses have to match in

I span of input words covered

I output constituent label

I first n–1 output words

not properly scored, since they lack context

I last n–1 output words

still affect scoring of subsequently added words,

just like in phrase-based decoding

(n is the order of the n-gram language model)



Stack Pruning

I Number of hypotheses in each chart cell explodes

→ Only keep a fixed number

I Different stacks for different output constituent labels?
I Cost estimates

I translation model cost known
I language model cost for internal words known
→ estimates for initial words

I outside cost estimate?
(predict how useful constituent will be later on)



Storing Rules

I Need to quickly check which rules apply
→ match to available hypotheses and input words

I Example rule

np → x1 des x2 | np1 of the nn2

I Check for applicability
I Subspan with constituent label np?
I Input word des?
I Subspan nn?

I Does it apply? – check this sequence:

np • des • nn • np1 of the nn2

I Use Prefix Tree → can check many rules at once



Prefix Tree for Rules

NP: NP1 of IN2 NP3

NP

PP …

DET
NP …

des
um

...
...

NN

NN

NP: NP1 IN2 NP3

NP: NP1 of DET2 NP3

NP: NP1 of the NN2

VP …

VP …

DET NN NP: DET1 NN2 

...
...

NP: NP1

das Haus NP: the house

NP: NP1 of NP2

NP: NP2 NP1

...
...

... ...

... ...

...

Highlighted Rules
np → np1 det2 nn3 | np1 in2 nn3

np → np1 | np1
np → np1 des nn2 | np1 of the nn2

np → np1 des nn2 | np2 np1
np → det1 nn2 | det1 nn2

np → das Haus | the house



Optimising Lookups – Dotted Rules

I If we are trying to match a rule like

p → A B C | x

. . . then it helps if we already matched A B to a subspan.

I So store partial matches of the prefix tree

I These are known as Dotted Rules

A B •



Where are we now?

I Avoid creating hypotheses that cannot be optimal
I Using recombination

I Only keep best scoring hypothesis in each cell
I Stack pruning

I Efficiently organise rules for lookup
I Prefix tree and dotted rules

I But LM lookup makes hypothesis combination so slow!

→ p(saw|the man) 6= p(saw)p(the|man)
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I Avoid creating hypotheses that cannot be optimal
I Using recombination

I Only keep best scoring hypothesis in each cell
I Stack pruning

I Efficiently organise rules for lookup
I Prefix tree and dotted rules

I But LM lookup makes hypothesis combination so slow!

→ p(saw|the man) 6= p(saw)p(the|man)



Filling a Constituent

X :VP

X :V X :NP

a vu
Hyp Score
seen −3.8
saw −4.0
view −4.0

l’homme
Hyp Score
man −3.6
the man −4.3
some men −6.3



Naive Beam Search

man -3.6 the man -4.3 some men -6.3
seen -3.8 seen man -8.8 seen the man -7.6 seen some men -9.5
saw -4.0 saw man -8.3 saw the man -6.9 saw some men -8.5
view -4.0 view man -8.5 view the man -8.9 view some men -10.8

Queue
Hypothesis Sum



Cube Pruning

man -3.6 the man -4.3 some men -6.3
seen -3.8 Queue

-8.8 -7.6 -9.5

saw -4.0

-8.3 -6.9 -8.5

view -4.0

-8.5 -8.9 -10.8

Queue
Hypothesis Sum
seen man -3.8-3.6=-7.4



Cube Pruning

man -3.6 the man -4.3 some men -6.3
seen -3.8 seen man -8.8 Queue

-7.6 -9.5

saw -4.0 Queue

-8.3 -6.9 -8.5

view -4.0

-8.5 -8.9 -10.8

Queue
Hypothesis Sum
saw man -4.0-3.6=-7.6
seen the man -3.8-4.3=-8.1



Cube Pruning
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saw the man -4.0-4.3=-8.3



Cube Pruning

man -3.6 the man -4.3 some men -6.3
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-7.6 -9.5
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Cube Pruning

man -3.6 the man -4.3 some men -6.3
seen -3.8 seen man -8.8 seen the man -7.6 Queue

-9.5

saw -4.0 saw man -8.3 Queue

-6.9 -8.5

view -4.0 view man -8.5 Queue

-8.9 -10.8

Queue
Hypothesis Sum
saw the man -4.0-4.3= -8.3
view the man -4.0-4.3= -8.3
seen some men -3.8-6.3=-10.1



Cube Pruning versus Beam Search

Same Bottom-up with fixed-size beams

Different Beam filling algorithm



Cube Pruning: Speed vs. Accuracy
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Many Cubes

I Could be several source-side matches for given span

I Create a cube for each one
I One queue per cube – or single queue

→ Always pop most promising hypothesis



One Stage or Two Stage Decoding

I First stage: decoding without a language model (-LM
decoding)

I Can be done exhaustively
I Eliminate dead ends
I Optionably prune out low scoring hypotheses

I Second stage: add language model
I Limited to packed chart obtained in first stage

I Can do a single pass (interleaved)

Vs.

cdec does 2 passes but Moses does 1!



Summary

I Synchronous context free grammars

I Rule extraction from aligned corpus

I Bottom-up decoding

I Chart organization: dynamic programming, stacks, pruning

I Prefix tree for rules

I Dotted rules

I Cube pruning


