Hierarchical Models and Chart-Based Decoding

Barry Haddow
(Based on slides by Philipp Koehn and Kenneth Heafield)

12 September, 2013



Tree-Based Models

» The models we've seen so far operate on sequences of words

» Many translation problems can be best explained by pointing
to syntax

» reordering, e.g., verb movement in German—English translation
» long distance agreement (e.g., subject-verb) in output

=- Translation models based on tree representation of language

» significant ongoing research
> state-of-the art for some language pairs



Phrase Structure Grammar

» Phrase structure

>

>
>
>

noun phrases: the big man, a house, ...
prepositional phrases: at 5 o’clock, in Edinburgh, ...
verb phrases: going out of business, eat chicken, ...
adjective phrases, ...

» Context-free Grammars (CFG)

non-terminals: phrase structure labels, part-of-speech tags
terminals: words
rules: rewrite non-terminal as sequence of Ts and NT

e.g. NP — DET NN

» Probabilistic Context-free Grammars (PCFG)

>

Attach probabilities to rules



Parse Tree

P/ i

RP TO PRP
shall be passmg on to you some comments

Phrase structure grammar tree for an English sentence
(as produced Collins’ parser)



Synchronous Context Free Grammar

> English rule
NP — DET JJ NN
» French rule
NP — DET NN JJ
» Synchronous rule (indices indicate alignment):

NP — DETj1 NN»> JJ3 | DET1 JJ3 NN»



Synchronous Grammar Rules

» Nonterminal rules
NP — DETj1 NN»> JJ3 | DET1 JJ3 NN»
» Terminal rules

N — maison | house

NP — la maison bleue | the blue house
> Mixed rules

NP — la maison JJ; | the JJ; house



Aligned Tree Pair
S ~
VP-A —
VP-A
VP-A

// TR

PP NP-A

/N N
MD VB VBG

PRP RP TO PRP DT NNS
I shall be passing on to you some comments

Ich werde Ihnen die entsprechenden Anmerkungen aushdndigen
PPER VAFIN PPER ART ADJ

NN VVFIN
\\\\/ N —

S/VP—__VP

Phrase structure grammar trees with word alignment
(German—English sentence pair.)



Reordering Rule

> Subtree alignment

VP A VP
/’\ vie I S ~
PPER NP VVFIN | |
_ _
— - . | . passing on
aushéndigen

» Synchronous grammar rule
VP — PPER; NPy aushéndigen | passing on PP; NPj

» Note:

» one word aushandigen mapped to two words passing on ok
» but: fully non-terminal rule not possible



Rules with Internal Structure

> Subtree alignment

PRO < PP
\ PN
Thnen TO PRP
\ \
to you

» Synchronous grammar rule (stripping out English internal
structure)
PRO/PP — Thnen | to you
» Rule with internal structure (Synchronous Tree Substitution
Grammar)

TO PRP

to you

PRO/PP  — Thnen



Learning Synchronous Grammars

» Extract rules from a word-aligned parallel corpus

» Hierarchical phrase-based model (hiero)

>

>

only one non-terminal symbol X
no linguistic syntax, just a formally syntactic model

» Synchronous phrase structure model

>

>
»
>

non-terminals for words and phrases: NP, VP, PP, ADJ, ...

corpus must also be parsed with syntactic parser
restrict extraction to rules compatible with parse
string-to-tree, tree-to-string, tree-to-tree, ...



Extracting Phrase Translation Rules

I

shall

be
passing
on

to

you

some
comments

Ich
werde
lhnen

die

entsprechenden
Anmerkungen
aushandigen

p shall be = werde



Extracting Phrase Translation Rules

5
28 ¢
o @ 9
=Sl .2
o £ 2
(] 5 O ®©
TG B ES
£ 0 €@ € c 3
Lz o< ®
|
shall
be
passing
on
to
you
some | .o some comments =
comments die entsprechenden Anmerkungen




Extracting Phrase Translation Rules

entsprechenden
Anmerkungen
aushandigen

Ich
werde
lhnen
die

shall
be
passing » werde Ihnen die entsprechenden
A Anmerkungen aushéndigen
= shall be passing on to you
to some comments

you
some
comments




Extracting Hierarchical Phrase Translation Rules

subtracting
subphrase

werde

lhnen

die
entsprechenden
Anmerkungen
aushandigen

<
o

I

shall

be
passing
on

to

you

some
comments

» werde X aushéndigen
= shall be passing on X




Hierarchical Rule extraction

v

All phrase-pairs licensed by PBMT heuristics

v

Recursively add hierarchical rules
» So if we have:
X — abc | pqrs X—=Db | qr
» We can add:
X — aXc | pXs

Continue until no more rules can be added

v

v

Rule probabilities derived from frequencies

v

Syntax-based models require non-terminals to be constituents



Hiero Extraction in Practice

» Removal of multiple sub-phrases leads to rules with multiple
non-terminals, such as:

Y — X1 X2 | X2 of X1
» Typical restrictions to limit complexity
» at most 2 nonterminal symbols
> at least 1 but at most 5 words per language
» span at most 15 words (counting gaps)
» Size of europarl-derived fr-en rule table:
» PB: 100M Hiero: 800M



Overview of Syntactic Decoding

Input Sentence

SCFG Parsing

Output Sentence




Overview of Syntactic Decoding

Input Sentence

Parallel Corpus

[ Translation Model

SCFG Parsing

Monolingual Corpus

Language Model ]

Output Sentence



Syntactic Decoding

Inspired by monolingual syntactic chart parsing:

During decoding of the source sentence,
a chart with translations for the O(n?) spans has to be filled

I | | |
I | | | | |
I | | | | |
I | | | | | | | | |
Sie will eine Tasse Kaffee trinken
PPER VAFIN ART NN NN VVINF



Syntax Decoding

Sie will eine Tasse Kaffee trinken
PPER VAFIN ART NN NN VVINF
o

/
s — VP

German input sentence with tree



Syntax Decoding

PRO
she

Sie will eine Tasse Kaffee trinken
PPER VAFIN ART NN NN VVINF
—_— N|P _—
/
g — VP

Purely lexical rule: filling a span with a translation (a constituent)



Syntax Decoding

PRO NN
she coffee

Sie will eine Tasse Kaffee trinken
PPER VAFIN ART NN NN VVINF
—_— N|P _—
/
g — VP

Purely lexical rule: filling a span with a translation (a constituent)



Syntax Decoding

PRO NN VB
she coffee drink

Sie will eine Tasse Kaffee trinken
PPER VAFIN ART NN NN VVINF
—_— N|P _—
/
g — VP

Purely lexical rule: filling a span with a translation (a constituent)



Syntax Decoding

NP
/\
NP PP
N
DET NN IN NN
| | |
a cup of
PRO : : NN VB
she . . coffee drink
Sie will eine Tasse Kaffee trinken
PPER VAFIN ART NN NN VVINF
—_— N|P _—
/
g — P

Complex rule: matching underlying constituent spans, and covering words



Syntax Decoding

VP
/\ VP
VBZ P
l TO VB NP
wants |
to
| —
NP
. /\
: NP PP
: N
: DET NN IN NN
: I | |
: a cup of
PRO : : : NN vB
she : : : coffee drink
Sie will eine Tasse Kaffee trinken
PPER VAFIN ART NN NN VVINF
—_— N|P _—
/
g — P

Complex rule with reordering



Syntax Decoding

/\
PRO VP
1
1
VP
VBZ T
| TO VB NP
wants |
to
| —
NP
. /\
: NP PP
: ~—N
: DET NN IN NN
: I I I
: a cup of
PRO : : : NN VB
she : : : coffee drink
Sie will eine Tasse Kaffee trinken
PPER VAFIN ART NN NN VVINF

S/VP




Bottom-Up Decoding

» For each span, a stack of (partial) translations is maintained

» Bottom-up: a higher stack is filled, once underlying stacks are
complete




Chart Organization

1
C 1]
C 1

Sie will eine

Tasse Kaffee trinken
PPER VAFIN ART NN

NN VVINF

=
—.

ﬂ | |
|

» Chart consists of cells that cover continuous spans over the
input sentence

» Each cell contains a set of hypotheses
» Hypothesis = translation of span with target-side constituent




Naive Algorithm

Input: Foreign sentence f = f1,...f,, with syntax tree
Output: English translation e

1. for all spans [start,end] (bottom up) do

2:  for all sequences s of hypotheses and words in span
[start,end] do

3 for all rules r do

4: if rule r applies to chart sequence s then

5: create new hypothesis ¢

6: add hypothesis ¢ to chart

7: end if

8: end for

9: end for

10: end for

11: return English translation e from best hypothesis in span [0,/¢]



Naive Algorithm

Input: Foreign sentence f = f1,...f,, with syntax tree
Output: English translation e
1. for all spans [start,end] (bottom up) do
2. for all sequences s of hypotheses and words in span
[start,end] do
for all rules r do
if rule r applies to chart sequence s then
create new hypothesis ¢
add hypothesis ¢ to chart
end if
end for
end for
10: end for
11: return English translation e from best hypothesis in span [0, /f]

© e N TR W

Many subspan sequences



Naive Algorithm

Input: Foreign sentence f = f1,...f,, with syntax tree
Output: English translation e
1. for all spans [start,end] (bottom up) do
2. for all sequences s of hypotheses and words in span
[start,end] do
for all rules r do |
if rule r applies to chart sequence s then
create new hypothesis ¢
add hypothesis ¢ to chart
end if
end for
end for
10: end for
11: return English translation e from best hypothesis in span [0, /f]

© ® N TR

Many rules



Naive Algorithm

Input: Foreign sentence f = f1,...f,, with syntax tree
Output: English translation e

1:
2:

10:
11:

© e N TR W

for all spans [start,end] (bottom up) do

for all sequences s of hypotheses and words in span
[start,end] do
for all rules r do
| if rule r applies to chart sequence s then|
create new hypothesis ¢
add hypothesis ¢ to chart
end if
end for
end for
end for
return English translation e from best hypothesis in span [0, /]

Checking rule application expensive



Naive Algorithm

Input: Foreign sentence f = f1,...f,, with syntax tree
Output: English translation e

1:
2:

10:
11:

© e N TR W

for all spans [start,end] (bottom up) do

for all sequences s of hypotheses and words in span
[start,end] do
for all rules r do
if rule r applies to chart sequence s then
Icreate new hypothesis cl
add hypothesis ¢ to chart
end if
end for
end for
end for
return English translation e from best hypothesis in span [0, /]

Scoring rules expensive — LM



Solutions

Recombination

v

v

Stack Pruning

Prefix tree and Dotted Rules

v

v

Cube pruning



Dynamic Programming

Rule application creates new hypothesis

NP: a cup of coffee

) apply rule:

NP — NP Kaffee ; NP = NP+P coffee

NP+P: a cup of
eine Tasse Kaffee trinken

ART NN NN VVINF



Dynamic Programming

Another hypothesis

[ NP: a cup of coffee ]

[ NP: a cup of coffee ]

®

apply rule:
NP — eine Tasse NP ; NP — a cup of NP

NP+P: a cup of

NP: coffee

eine Tasse Kaffee trinken
ART NN NN VVINF

Both hypotheses are indistiguishable in future search
— can be recombined



Recombinable States

Recombinable?

| NP: a cup of coffee

| NP: a cup of coffee

| NP: a mug of coffee




Recombinable States

Recombinable?

| NP: a cup of |

| NP: a cup of |

| NP: = mug of |

Yes, if max. 2-gram language model is used



Recombinability

Hypotheses have to match in
» span of input words covered

» output constituent label

» first n—1 output words
not properly scored, since they lack context
» last n—1 output words

still affect scoring of subsequently added words,

just like in phrase-based decoding

(n is the order of the n-gram language model)



Stack Pruning

» Number of hypotheses in each chart cell explodes
— Only keep a fixed number

» Different stacks for different output constituent labels?
» Cost estimates

» translation model cost known

» language model cost for internal words known
— estimates for initial words

» outside cost estimate?
(predict how useful constituent will be later on)



Storing Rules

v

Need to quickly check which rules apply
— match to available hypotheses and input words

v

Example rule

NP — X3 des Xp | NPj of the NN;
Check for applicability

» Subspan with constituent label NP7
> Input word des?
» Subspan NN7

v

v

Does it apply? — check this sequence:
NP o des e NN o NP; of the NN»

v

Use Prefix Tree — can check many rules at once



Prefix Tree for Rules
NP DET &—p NN NP:

NP . : §> NP:

NP: NP1 NP

VP ...

des @——» NN NP:
um @——p VP ... NP:
: : NP

DET HNN o —>» NP DET1 NN2

das HHaus *—» NP the house

Highlighted Rules

NP1 IN2 NP3
NP1 of DET2 NP3

NP1 of IN2 NP3

NP1 of the NN2
NP2 NP1

: NP1 of NP2

NP — NP; DET2 NN3 | NPj IN NN3

NP — NPj | NPj

NP — NPj des NN | NPj of the NN;

NP — NPj des NN | NPy NPj
NP — DET; NNz | DETj NNp
NP — das Haus | the house



Optimising Lookups — Dotted Rules

> If we are trying to match a rule like
p—ABC | x

... then it helps if we already matched A B to a subspan.

» So store partial matches of the prefix tree

» These are known as Dotted Rules
ABe



Where are we now?

» Avoid creating hypotheses that cannot be optimal
» Using recombination

» Only keep best scoring hypothesis in each cell
» Stack pruning

» Efficiently organise rules for lookup
> Prefix tree and dotted rules



Where are we now?

v

Avoid creating hypotheses that cannot be optimal
» Using recombination

v

Only keep best scoring hypothesis in each cell
» Stack pruning

v

Efficiently organise rules for lookup
> Prefix tree and dotted rules

v

But LM lookup makes hypothesis combination so slow!
— p(saw|the man) # p(saw)p(the/man)



Filling a Constituent

X:VP

XV X:NP

avu I'"homme
Hyp Score Hyp Score
seen —3.8 man —3.6
saw —4.0 the man —4.3
view —4.0 some men —6.3



Naive Beam Search

seen -3.8
saw -4.0
view -4.0

man -3.6
seen man -8.8
saw man -8.3
view man -8.5

the man -4.3
seen the man -7.6
saw the man -6.9
view the man -8.9

some men -6.3
seen some men -9.5
saw some men -8.5
view some men -10.8



Cube Pruning

man -3.6 the man-4.3 some men -6.3
seen -3.8 Queue
saw -4.0
view -4.0

Queue
Hypothesis Sum
=»seen man -3.8-3.6=-7.4



Cube Pruning

man -3.6 the man -4.3
seen -3.8 seen man -8.8 Queue
saw -4.0 Queue
view -4.0

Queue
Hypothesis Sum
=»saw man -4.0-3.6=-7.6
seen the man -3.8-4.3=-8.1

some men -6.3



Cube Pruning

man -3.6 the man -4.3 some men -6.3
seen -3.8 seen man -8.8 Queue
saw -4.0 saw man -8.3 Queue
view -4.0 Queue

Queue
Hypothesis Sum
=»view man -4.0-3.6=-7.6
seen the man -3.8-4.3=-8.1
saw the man -4.0-4.3=-8.3



Cube Pruning

man -3.6 the man -4.3
seen -3.8 seen man -8.8 Queue
saw -4.0 saw man -8.3 Queue
view -4.0 view man -8.5 Queue

Queue
Hypothesis Sum
=»seen the man -3.8-4.3=-8.1
saw the man  -4.0-4.3=-8.3
view the man -4.0-4.3=-8.3

some men -6.3



Cube Pruning

man -3.6 the man -4.3 some men -6.3
seen -3.8 seen man -8.8 seen the man -7.6 Queue
saw -4.0 saw man -8.3 Queue
view -4.0 view man -8.5 Queue

Queue
Hypothesis Sum
=»saw the man -4.0-4.3= -8.3
view the man -4.0-4.3= -8.3
seen some men -3.8-6.3=-10.1



Cube Pruning versus Beam Search

Same Bottom-up with fixed-size beams

Different Beam filling algorithm



Cube Pruning: Speed vs. Accuracy

-101.40

-101.45

-101.50

-101.55

-101.60

Average model score

-101.65

-101.70

2

3 4
CPU seconds/sentence




Many Cubes

» Could be several source-side matches for given span
> Create a cube for each one

» One queue per cube — or single queue
— Always pop most promising hypothesis



One Stage or Two Stage Decoding

» First stage: decoding without a language model (-LM
decoding)

» Can be done exhaustively
» Eliminate dead ends
» Optionably prune out low scoring hypotheses

» Second stage: add language model
» Limited to packed chart obtained in first stage

» Can do a single pass (interleaved)

Vs.

cdec does 2 passes but Moses does 1!



Summary

» Synchronous context free grammars

» Rule extraction from aligned corpus

» Bottom-up decoding

» Chart organization: dynamic programming, stacks, pruning
> Prefix tree for rules

> Dotted rules

» Cube pruning



