
Hierarchical Models and Chart-Based Decoding

Barry Haddow
(Based on slides by Philipp Koehn and Kenneth Heafield)

12 September, 2013

Tree-Based Models

I The models we’ve seen so far operate on sequences of words

I Many translation problems can be best explained by pointing
to syntax

I reordering, e.g., verb movement in German–English translation
I long distance agreement (e.g., subject-verb) in output

⇒ Translation models based on tree representation of language
I significant ongoing research
I state-of-the art for some language pairs

Phrase Structure Grammar

I Phrase structure
I noun phrases: the big man, a house, ...
I prepositional phrases: at 5 o’clock, in Edinburgh, ...
I verb phrases: going out of business, eat chicken, ...
I adjective phrases, ...

I Context-free Grammars (CFG)

non-terminals: phrase structure labels, part-of-speech tags
terminals: words
rules: rewrite non-terminal as sequence of Ts and NT

e.g. np → det nn

I Probabilistic Context-free Grammars (PCFG)
I Attach probabilities to rules

Parse Tree

PRP
I

MD
shall

VB
be

VBG
passing

RP
on

TO
to

PRP
you

DT
some

NNS
comments

NP-APP

VP-A
VP-A

VP-A
S

Phrase structure grammar tree for an English sentence
(as produced Collins’ parser)

Synchronous Context Free Grammar

I English rule

np → det jj nn

I French rule

np → det nn jj

I Synchronous rule (indices indicate alignment):

np → det1 nn2 jj3 | det1 jj3 nn2

Synchronous Grammar Rules

I Nonterminal rules

np → det1 nn2 jj3 | det1 jj3 nn2

I Terminal rules

n → maison | house

np → la maison bleue | the blue house

I Mixed rules

np → la maison jj1 | the jj1 house

Aligned Tree Pair

PRP
I

MD
shall

VB
be

VBG
passing

RP
on

TO
to

PRP
you

DT
some

NNS
comments

NP-APP

VP-A
VP-A

VP-A
S

Ich
PPER

werde
VAFIN

Ihnen
PPER

die
ART

entsprechenden
ADJ

Anmerkungen
NN

aushändigen
VVFIN

NP

VP
S VP

Phrase structure grammar trees with word alignment
(German–English sentence pair.)

Reordering Rule

I Subtree alignment

vp

pper

...

np

...

vvfin

aushändigen

↔ vp

vbg

passing

rp

on

pp

...

np

...

I Synchronous grammar rule

vp → pper1 np2 aushändigen | passing on pp1 np2
I Note:

I one word aushändigen mapped to two words passing on ok
I but: fully non-terminal rule not possible

Rules with Internal Structure

I Subtree alignment

pro

Ihnen

↔ pp

to

to

prp

you

I Synchronous grammar rule (stripping out English internal
structure)

pro/pp → Ihnen | to you

I Rule with internal structure (Synchronous Tree Substitution
Grammar)

pro/pp → Ihnen to

to

prp

you

Learning Synchronous Grammars

I Extract rules from a word-aligned parallel corpus

I Hierarchical phrase-based model (hiero)
I only one non-terminal symbol x
I no linguistic syntax, just a formally syntactic model

I Synchronous phrase structure model
I non-terminals for words and phrases: np, vp, pp, adj, ...
I corpus must also be parsed with syntactic parser
I restrict extraction to rules compatible with parse
I string-to-tree, tree-to-string, tree-to-tree, . . .

Extracting Phrase Translation Rules

I
shall

be
passing

some

on
to

you

comments

Ic
h

we
rd

e
Ih

ne
n

di
e

en
ts

pr
ec

he
nd

en
An

m
er

ku
ng

en
au

sh
än

di
ge

n

shall be = werde

Extracting Phrase Translation Rules

I
shall

be
passing

some

on
to

you

comments

Ic
h

we
rd

e
Ih

ne
n

di
e

en
ts

pr
ec

he
nd

en
An

m
er

ku
ng

en
au

sh
än

di
ge

n

some comments =
die entsprechenden Anmerkungen

Extracting Phrase Translation Rules

I
shall

be
passing

some

on
to

you

comments

Ic
h

we
rd

e
Ih

ne
n

di
e

en
ts

pr
ec

he
nd

en
An

m
er

ku
ng

en
au

sh
än

di
ge

n
werde Ihnen die entsprechenden
Anmerkungen aushändigen
 = shall be passing on to you
 some comments

Extracting Hierarchical Phrase Translation Rules

I
shall

be
passing

some

on
to

you

comments

Ic
h

we
rd

e
Ih

ne
n

di
e

en
ts

pr
ec

he
nd

en
An

m
er

ku
ng

en
au

sh
än

di
ge

n
werde X aushändigen
= shall be passing on X

subtracting
subphrase

Hierarchical Rule extraction

I All phrase-pairs licensed by PBMT heuristics
I Recursively add hierarchical rules

I So if we have:

X → abc | pqrs X → b | qr

I We can add:

X → aXc | pXs

I Continue until no more rules can be added

I Rule probabilities derived from frequencies

I Syntax-based models require non-terminals to be constituents

Hiero Extraction in Practice

I Removal of multiple sub-phrases leads to rules with multiple
non-terminals, such as:

y → x1 x2 | x2 of x1

I Typical restrictions to limit complexity
I at most 2 nonterminal symbols
I at least 1 but at most 5 words per language
I span at most 15 words (counting gaps)

I Size of europarl-derived fr-en rule table:
I PB: 100M Hiero: 800M

Overview of Syntactic Decoding

Decoding

SCFG Parsing

Search

Input Sentence

Output Sentence

Translation Model

Parallel Corpus

Language Model

Monolingual Corpus

Overview of Syntactic Decoding

Decoding

SCFG Parsing

Search

Input Sentence

Output Sentence

Translation Model

Parallel Corpus

Language Model

Monolingual Corpus

Syntactic Decoding

Inspired by monolingual syntactic chart parsing:

During decoding of the source sentence,
a chart with translations for the O(n2) spans has to be filled

Sie
PPER

will
VAFIN

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP

VP
S

Syntax Decoding

Sie
PPER

will
VAFIN

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP

VP
S

VB
drink

➏

German input sentence with tree

Syntax Decoding

Sie
PPER

will
VAFIN

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP

VP
S

PRO
she

VB
drink

➏

➊

Purely lexical rule: filling a span with a translation (a constituent)

Syntax Decoding

Sie
PPER

will
VAFIN

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP

VP
S

PRO
she

VB
drink

NN
coffee

➏

➊ ➋

Purely lexical rule: filling a span with a translation (a constituent)

Syntax Decoding

Sie
PPER

will
VAFIN

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP

VP
S

PRO
she

VB
drink

NN
coffee

➏

➊ ➋ ➌

Purely lexical rule: filling a span with a translation (a constituent)

Syntax Decoding

Sie
PPER

will
VAFIN

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP

VP
S

PRO
she

VB
drink

NN
|

cup

IN
|
of

NP

PP

NN

NP

DET
|
a

NN
coffee

➏

➊ ➋ ➌

➍

Complex rule: matching underlying constituent spans, and covering words

Syntax Decoding

Sie
PPER

will
VAFIN

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP

VP
S

PRO
she

VB
drink

NN
|

cup

IN
|
of

NP

PP

NN

NP

DET
|
a

VBZ
|

wants
VB

VP
VP

NPTO
|
to

NN
coffee

➏

➊ ➋ ➌

➍

➎

Complex rule with reordering

Syntax Decoding

Sie
PPER

will
VAFIN

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP

VP
S

PRO
she

VB
drink

NN
|

cup

IN
|

of

NP

PP

NN

NP

DET
|
a

VBZ
|

wants
VB

VP
VP

NPTO
|

to

NN
coffee

S

PRO VP

➏

➊ ➋ ➌

➍

➎

Bottom-Up Decoding

I For each span, a stack of (partial) translations is maintained

I Bottom-up: a higher stack is filled, once underlying stacks are
complete

Chart Organization

Sie
PPER

will
VAFIN

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP

VP
S

I Chart consists of cells that cover continuous spans over the
input sentence

I Each cell contains a set of hypotheses
I Hypothesis = translation of span with target-side constituent

Naive Algorithm

Input: Foreign sentence f = f1, ...flf , with syntax tree
Output: English translation e

1: for all spans [start,end] (bottom up) do
2: for all sequences s of hypotheses and words in span

[start,end] do
3: for all rules r do
4: if rule r applies to chart sequence s then
5: create new hypothesis c
6: add hypothesis c to chart
7: end if
8: end for
9: end for

10: end for
11: return English translation e from best hypothesis in span [0,lf]

Naive Algorithm

Input: Foreign sentence f = f1, ...flf , with syntax tree
Output: English translation e

1: for all spans [start,end] (bottom up) do
2: for all sequences s of hypotheses and words in span

[start,end] do
3: for all rules r do
4: if rule r applies to chart sequence s then
5: create new hypothesis c
6: add hypothesis c to chart
7: end if
8: end for
9: end for

10: end for
11: return English translation e from best hypothesis in span [0,lf]

Many subspan sequences

Naive Algorithm

Input: Foreign sentence f = f1, ...flf , with syntax tree
Output: English translation e

1: for all spans [start,end] (bottom up) do
2: for all sequences s of hypotheses and words in span

[start,end] do
3: for all rules r do
4: if rule r applies to chart sequence s then
5: create new hypothesis c
6: add hypothesis c to chart
7: end if
8: end for
9: end for

10: end for
11: return English translation e from best hypothesis in span [0,lf]

Many rules

Naive Algorithm

Input: Foreign sentence f = f1, ...flf , with syntax tree
Output: English translation e

1: for all spans [start,end] (bottom up) do
2: for all sequences s of hypotheses and words in span

[start,end] do
3: for all rules r do
4: if rule r applies to chart sequence s then
5: create new hypothesis c
6: add hypothesis c to chart
7: end if
8: end for
9: end for

10: end for
11: return English translation e from best hypothesis in span [0,lf]

Checking rule application expensive

Naive Algorithm

Input: Foreign sentence f = f1, ...flf , with syntax tree
Output: English translation e

1: for all spans [start,end] (bottom up) do
2: for all sequences s of hypotheses and words in span

[start,end] do
3: for all rules r do
4: if rule r applies to chart sequence s then
5: create new hypothesis c
6: add hypothesis c to chart
7: end if
8: end for
9: end for

10: end for
11: return English translation e from best hypothesis in span [0,lf]

Scoring rules expensive → LM

Solutions

I Recombination

I Stack Pruning

I Prefix tree and Dotted Rules

I Cube pruning

Dynamic Programming

Rule application creates new hypothesis

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP: coffee

NP+P: a cup of

NP: a cup of coffee

apply rule:
NP → NP Kaffee ; NP → NP+P coffee

Dynamic Programming

Another hypothesis

eine
ART

Tasse
NN

Kaffee
NN

trinken
VVINF

NP: coffee

NP+P: a cup of

NP: a cup of coffee

apply rule:
NP → eine Tasse NP ; NP → a cup of NP

NP: a cup of coffee

Both hypotheses are indistiguishable in future search
→ can be recombined

Recombinable States

Recombinable?

NP: a cup of coffee

NP: a cup of coffee

NP: a mug of coffee

Yes, if max. 2-gram language model is used

Recombinable States

Recombinable?

NP: a cup of coffee

NP: a cup of coffee

NP: a mug of coffee

Yes, if max. 2-gram language model is used

Recombinability

Hypotheses have to match in

I span of input words covered

I output constituent label

I first n–1 output words

not properly scored, since they lack context

I last n–1 output words

still affect scoring of subsequently added words,

just like in phrase-based decoding

(n is the order of the n-gram language model)

Stack Pruning

I Number of hypotheses in each chart cell explodes

→ Only keep a fixed number

I Different stacks for different output constituent labels?
I Cost estimates

I translation model cost known
I language model cost for internal words known
→ estimates for initial words

I outside cost estimate?
(predict how useful constituent will be later on)

Storing Rules

I Need to quickly check which rules apply
→ match to available hypotheses and input words

I Example rule

np → x1 des x2 | np1 of the nn2

I Check for applicability
I Subspan with constituent label np?
I Input word des?
I Subspan nn?

I Does it apply? – check this sequence:

np • des • nn • np1 of the nn2

I Use Prefix Tree → can check many rules at once

Prefix Tree for Rules

NP: NP1 of IN2 NP3

NP

PP …

DET
NP …

des
um

...
...

NN

NN

NP: NP1 IN2 NP3

NP: NP1 of DET2 NP3

NP: NP1 of the NN2

VP …

VP …

DET NN NP: DET1 NN2

...
...

NP: NP1

das Haus NP: the house

NP: NP1 of NP2

NP: NP2 NP1

...
...

... ...

... ...

...

Highlighted Rules
np → np1 det2 nn3 | np1 in2 nn3

np → np1 | np1
np → np1 des nn2 | np1 of the nn2

np → np1 des nn2 | np2 np1
np → det1 nn2 | det1 nn2

np → das Haus | the house

Optimising Lookups – Dotted Rules

I If we are trying to match a rule like

p → A B C | x

. . . then it helps if we already matched A B to a subspan.

I So store partial matches of the prefix tree

I These are known as Dotted Rules

A B •

Where are we now?

I Avoid creating hypotheses that cannot be optimal
I Using recombination

I Only keep best scoring hypothesis in each cell
I Stack pruning

I Efficiently organise rules for lookup
I Prefix tree and dotted rules

I But LM lookup makes hypothesis combination so slow!

→ p(saw|the man) 6= p(saw)p(the|man)

Where are we now?

I Avoid creating hypotheses that cannot be optimal
I Using recombination

I Only keep best scoring hypothesis in each cell
I Stack pruning

I Efficiently organise rules for lookup
I Prefix tree and dotted rules

I But LM lookup makes hypothesis combination so slow!

→ p(saw|the man) 6= p(saw)p(the|man)

Filling a Constituent

X :VP

X :V X :NP

a vu
Hyp Score
seen −3.8
saw −4.0
view −4.0

l’homme
Hyp Score
man −3.6
the man −4.3
some men −6.3

Naive Beam Search

man -3.6 the man -4.3 some men -6.3
seen -3.8 seen man -8.8 seen the man -7.6 seen some men -9.5
saw -4.0 saw man -8.3 saw the man -6.9 saw some men -8.5
view -4.0 view man -8.5 view the man -8.9 view some men -10.8

Queue
Hypothesis Sum

Cube Pruning

man -3.6 the man -4.3 some men -6.3
seen -3.8 Queue

-8.8 -7.6 -9.5

saw -4.0

-8.3 -6.9 -8.5

view -4.0

-8.5 -8.9 -10.8

Queue
Hypothesis Sum
seen man -3.8-3.6=-7.4

Cube Pruning

man -3.6 the man -4.3 some men -6.3
seen -3.8 seen man -8.8 Queue

-7.6 -9.5

saw -4.0 Queue

-8.3 -6.9 -8.5

view -4.0

-8.5 -8.9 -10.8

Queue
Hypothesis Sum
saw man -4.0-3.6=-7.6
seen the man -3.8-4.3=-8.1

Cube Pruning

man -3.6 the man -4.3 some men -6.3
seen -3.8 seen man -8.8 Queue

-7.6 -9.5

saw -4.0 saw man -8.3 Queue

-6.9 -8.5

view -4.0 Queue

-8.5 -8.9 -10.8

Queue
Hypothesis Sum
view man -4.0-3.6=-7.6
seen the man -3.8-4.3=-8.1
saw the man -4.0-4.3=-8.3

Cube Pruning

man -3.6 the man -4.3 some men -6.3
seen -3.8 seen man -8.8 Queue

-7.6 -9.5

saw -4.0 saw man -8.3 Queue

-6.9 -8.5

view -4.0 view man -8.5 Queue

-8.9 -10.8

Queue
Hypothesis Sum
seen the man -3.8-4.3=-8.1
saw the man -4.0-4.3=-8.3
view the man -4.0-4.3=-8.3

Cube Pruning

man -3.6 the man -4.3 some men -6.3
seen -3.8 seen man -8.8 seen the man -7.6 Queue

-9.5

saw -4.0 saw man -8.3 Queue

-6.9 -8.5

view -4.0 view man -8.5 Queue

-8.9 -10.8

Queue
Hypothesis Sum
saw the man -4.0-4.3= -8.3
view the man -4.0-4.3= -8.3
seen some men -3.8-6.3=-10.1

Cube Pruning versus Beam Search

Same Bottom-up with fixed-size beams

Different Beam filling algorithm

Cube Pruning: Speed vs. Accuracy

-101.70

-101.65

-101.60

-101.55

-101.50

-101.45

-101.40

0 1 2 3 4 5 6

A
ve

ra
ge

m
o

d
el

sc
or

e

CPU seconds/sentence

Many Cubes

I Could be several source-side matches for given span

I Create a cube for each one
I One queue per cube – or single queue

→ Always pop most promising hypothesis

One Stage or Two Stage Decoding

I First stage: decoding without a language model (-LM
decoding)

I Can be done exhaustively
I Eliminate dead ends
I Optionably prune out low scoring hypotheses

I Second stage: add language model
I Limited to packed chart obtained in first stage

I Can do a single pass (interleaved)

Vs.

cdec does 2 passes but Moses does 1!

Summary

I Synchronous context free grammars

I Rule extraction from aligned corpus

I Bottom-up decoding

I Chart organization: dynamic programming, stacks, pruning

I Prefix tree for rules

I Dotted rules

I Cube pruning

