
Tasks

1 Estimate a model from text
2 Query probabilities

1

Stupid Backoff

1 Count n-grams offline

count(wn
1)

2 Compute pseudo-probabilities at runtime

stupid(wn | wn−1
1) =


count(wn

1)

count(wn−1
1)

if count(wn
1) > 0

0.4stupid(wn | wn−1
2) if count(wn

1) = 0

Note: stupid does not sum to 1.

[Brants et al, 2007]

2

Stupid Backoff

1 Count n-grams offline

count(wn
1)

2 Compute pseudo-probabilities at runtime

stupid(wn | wn−1
1) =


count(wn

1)

count(wn−1
1)

if count(wn
1) > 0

0.4stupid(wn | wn−1
2) if count(wn

1) = 0

Note: stupid does not sum to 1.

[Brants et al, 2007]

3

Counting n-grams

<s> Australia is one of the few

5-gram Count
<s> Australia is one of 1
Australia is one of the 1
is one of the few 1

Hash table from n-gram to count.

4

Query

stupid(wn | wn−1
1) =


count(wn

1)

count(wn−1
1)

if count(wn
1) > 0

0.4stupid(wn | wn−1
2) if count(wn

1) = 0

stupid(few | is one of the)

count(is one of the few) = 5 3

count(is one of the) = 12

5

Query

stupid(wn | wn−1
1) =


count(wn

1)

count(wn−1
1)

if count(wn
1) > 0

0.4stupid(wn | wn−1
2) if count(wn

1) = 0

stupid(periwinkle | is one of the)

count(is one of the periwinkle) = 0 7
count(one of the periwinkle) = 0 7

count(of the periwinkle) = 0 7
count(the periwinkle) = 3 3

count(the) = 1000

6

What’s Left?

Hash table uses too much RAM

Non-“stupid” smoothing methods (e.g. Kneser-Ney)

7

Save Memory: Forget Keys

Giant hash table with n-grams as keys and counts as values.

Replace the n-grams with 64-bit hashes:
Store hash(is one of) instead of “is one of”.

Ignore collisions.

Birthday attack:
√

264 = 232.
=⇒ Low chance of collision until ≈ 4 billion entries.

8

Save Memory: Forget Keys

Giant hash table with n-grams as keys and counts as values.

Replace the n-grams with 64-bit hashes:
Store hash(is one of) instead of “is one of”.

Ignore collisions.

Birthday attack:
√

264 = 232.
=⇒ Low chance of collision until ≈ 4 billion entries.

9

Default Hash Table

boost::unordered map and gnu cxx::hash map

0 1 2 3 4 5

Bucket array

n-grams

Lookup requires two random memory accesses.

10

Default Hash Table

boost::unordered map and gnu cxx::hash map

0 1 2 3 4 5

Bucket array

n-grams

Lookup requires two random memory accesses.

11

Linear Probing Hash Table

1.5 buckets/entry (so buckets = 6).

Ideal bucket = hash mod buckets.

Resolve bucket collisions using the next free bucket.

Bigrams
Words Ideal Hash Count
iran is 0 0x959e48455f4a2e90 3

0x0 0
is one 2 0x186a7caef34acf16 5
one of 2 0xac66610314db8dac 2
<s> iran 4 0xf0ae9c2442c6920e 1

0x0 0

12

Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n − grams|)
→ Use these as array offsets.

Entries not in the model get assigned offsets
=⇒ Store a fingerprint of each n-gram

Low memory, but potential for false positives

13

Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n − grams|)
→ Use these as array offsets.

Entries not in the model get assigned offsets
=⇒ Store a fingerprint of each n-gram

Low memory, but potential for false positives

14

Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n − grams|)
→ Use these as array offsets.

Entries not in the model get assigned offsets
=⇒ Store a fingerprint of each n-gram

Low memory, but potential for false positives

15

Sorted Array

Sort n-grams, perform binary search.

Binary search is O(|n-grams| log |n-grams|).

Interpolation search is O(|n-grams| log log |n-grams|)

16

Sorted Array

Sort n-grams, perform binary search.

Binary search is O(|n-grams| log |n-grams|).

Interpolation search is O(|n-grams| log log |n-grams|)

17

1

10

100

10 1000 100000 107

L
o

ok
u

p
s/
µ

s

Entries

probing
hash set
unordered set
interpolation
binary search
set

18

Trie

Reverse n-grams, arrange in a trie.

Australia <s>

are

one
are

is Australia
is Australia <s>

<s>

of one
are

is

19

Saving More RAM

Quantization: store approximate values

Collapse probability and backoff

20

Conclusion

Implementation involves sparse mapping

Hash table

Probing hash table

Minimal perfect hash table

Sorted array with binary or interpolation search

21

