Tasks

@ Estimate a model from text

@ Query probabilities

Stupid Backoff

@ Count n-grams offline

@ Compute pseudo-probabilities at runtime

[Brants et al, 2007]

Stupid Backoff

@ Count n-grams offline

count(wy")

@ Compute pseudo-probabilities at runtime

count(w;y
) L‘/B if count(wy') >0
stupid(wn ’ Wlnf) = COUI‘]t(Wl)

0.4stupid(w, | W2”*1) if count(wy') =0

Note: stupid does not sum to 1.

[Brants et al, 2007]

Counting n-grams

<s> Australia is one of the few

\

5-gram Count
<s> Australia is one of 1
Australia is one of the 1
is one of the few 1

Hash table from n-gram to count.

—

Query

count(wy)
stupid(w, | w™1) = { count(wy™ ")

0.4stupid(w, | wy™') if count(wy) =0

if count(wy') >0

stupid(few | is one of the)

count(is one of the few) = 5

count(is one of the) = 12

Query

t n
[count(wr). reountlud) =0
stupid(w, | wy'™") = 4 count(wy'™")

0.4stupid(w, | ws™') if count(wy) =0

stupid(periwinkle | is one of the)

count(is one of the periwinkle) = 0 X
count(one of the periwinkle) = 0 X
count(of the periwinkle) = O X
count(the periwinkle) =
)

count(the) = 1000

What's Left?

e Hash table uses too much RAM
e Non-"stupid” smoothing methods (e.g. Kneser-Ney)

Save Memory: Forget Keys

Giant hash table with n-grams as keys and counts as values.

Replace the n-grams with 64-bit hashes:
Store hash(is one of) instead of “is one of".
Ignore collisions.

Save Memory: Forget Keys

Giant hash table with n-grams as keys and counts as values.

Replace the n-grams with 64-bit hashes:
Store hash(is one of) instead of “is one of".
Ignore collisions.

Birthday attack: /204 = 232,
— Low chance of collision until = 4 billion entries.

Default Hash Table

boost: :unordered map and __gnu_cxx: :hash map

| | Bucket array

Default Hash Table

boost: :unordered map and __gnu_cxx: :hash map

@

? M ? n-grams

| | Bucket array

Lookup requires two random memory accesses.

Linear Probing Hash Table

@ 1.5 buckets/entry (so buckets = 6).
@ Ideal bucket = hash mod buckets.

@ Resolve bucket collisions using the next free bucket.

Bigrams

Words Ideal Hash Count
iran is 0 0x959e48455f4a2e90 3

0x0 0
is one 2 0x186a7caef34acfl6 5
one of 2 Oxac66610314db8dac 2
<s> iran 4 0xf0ae9c2442c6920e 1

0x0 0

Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n — grams|)
— Use these as array offsets.

Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n — grams|)
— Use these as array offsets.

Entries not in the model get assigned offsets
= Store a fingerprint of each n-gram

Minimal Perfect Hash Table

Maps every n-gram to a unique integer [0, |n — grams|)
— Use these as array offsets.

Low memory, but potential for false positives

Sorted Array

Sort n-grams, perform binary search.

Binary search is O(|n-grams|log |n-grams|).

Sorted Array

Sort n-grams, perform binary search.

Binary search is O(|n-grams|log |n-grams|).

Interpolation search is O(|n-grams| log log |n-grams|)

“\ T T T TTTTT T LA T T TTTTIT T T T TTTTT T T T TTTIT T T TTTTIT T T T TTTTT T T
100 T —,
L .
Q-:é(‘:::x]
%]
=
a 10 E T T e ek *::%.\
= C e i by
o) | \x\x,"& “". 0\"9\\ i
_,O L - X *k kY S
L \‘ Ek*_ ,
L Hey
—A— Erobi ng \\ o
ash_set w
1 | ---o-- unordered._set N\, -
[e interpolation >]
[———- binary_search s]
L set \ \ \)
10 1000 100000 107

Entries

Trie
Reverse n-grams, arrange in a trie.

IS
of —— one —
T are

<s>

A is — Australia — <s>

is — Australia
N"one—
\ T are

are

Australia — <s>

Saving More RAM

@ Quantization: store approximate values

@ Collapse probability and backoff

Conclusion

Implementation involves sparse mapping
e Hash table
e Probing hash table
e Minimal perfect hash table

e Sorted array with binary or interpolation search

