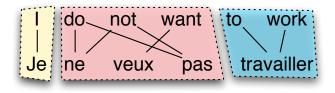
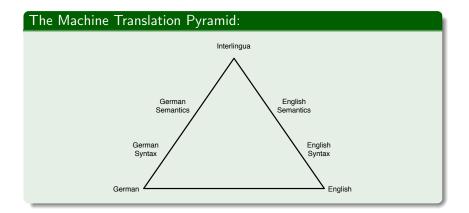
Compositional Semantics, Deep Learning, and Machine Translation

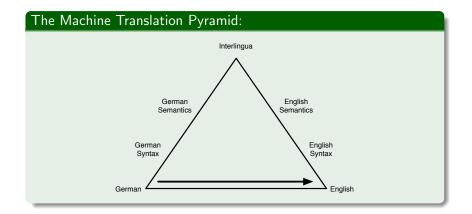
Karl Moritz Hermann, Nal Kalchbrenner, and Phil Blunsom

phil.blunsom@cs.ox.ac.uk

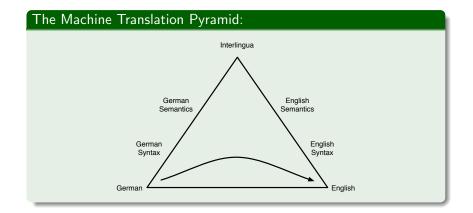


- There is not much other than (lexical) semantics in a phrase based MT system.
- What people actually mean when they semantics is often generalisation.

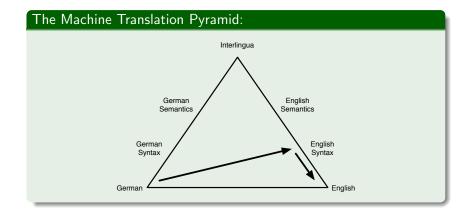




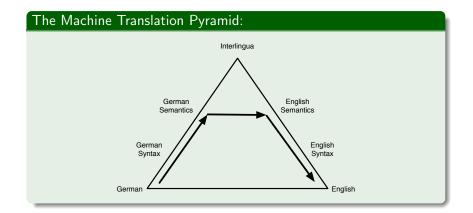
Phrase based



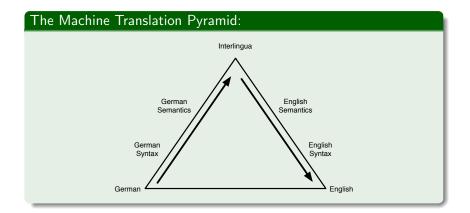
Hierarchical (Hiero) MT



String to tree

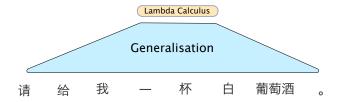


Semantic transfer

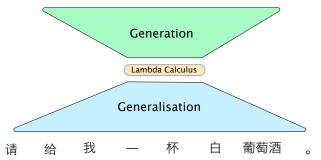


Interlingua: the language of God/lambda calculus

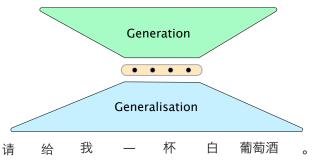
请 给 我 一 杯 白 葡萄酒 。



i 'd like a glass of white wine , please .



i 'd like a glass of white wine , please .



Formal logical representations are very hard to learn from data. Let's just assume a vector space and see how we go.

1 Distributed Representations in Compositional Semantics

2 From Vector Space Compositional Semantics to MT

We can represent words using a number of approaches

- Characters
- POS tags
- Grammatical roles
- Named Entity Recognition
- Collocation and distributional representations
- Task-specific features

All of these representations can be encoded in vectors. Some of these representations capture *meaning*.

A simple task

Q: Do two words (roughly) mean the same? "Cat" \equiv "Dog" ?

A: Use a distributional representation to find out.

Given a vector representation, we can calculate the similarity between two things using their cosine. We know that $^1\,$

 $A \cdot B = \|A\| \|B\| cos(\theta)$

Where $cos(\theta)$ is the cosine of the angle between the two vectors A and B. From this it follows that:

$$Sim(A,B) = cos(heta) = rac{A \cdot B}{\|A\| \|B\|}$$

¹http://en.wikipedia.org/wiki/Cosine_similarity

 $cos(\theta)$ lies on a range between -1 and 1, with 1 indicating full similarity and 0 indicating no relation and -1 indicating exact opposites.

Cat Dog

$$\begin{bmatrix} 0.7 \\ 0.6 \\ 0.6 \end{bmatrix} \begin{bmatrix} 0.7 \\ -0.3 \\ 0.1 \end{bmatrix}$$

Sim(cat, dog) = 0.437

Villa House

$$\begin{bmatrix} 0.4\\ 0.5\\ 0.3 \end{bmatrix}$$
 $\begin{bmatrix} 0.3\\ 0.4\\ 0.2 \end{bmatrix}$
Sim(villa, house) = 0.998

Q: Do two sentences (roughly) mean the same? "He enjoys Jazz music" \equiv "He likes listening to Jazz" ?

A: Use a distributional representation to find out?

A different task: paraphrase detection

Q: Do two sentences (roughly) mean the same? "He enjoys Jazz music" \equiv "He likes listening to Jazz" ?

A: Use a distributional representation to find out?

Most representations not sensible on the sentence level

- Characters ?
- POS tags ?
- Grammatical roles ?
- Named Entity Recognition ?
- Collocation and distributional representations ?
- Task-specific features ?

The curse of dimensionality

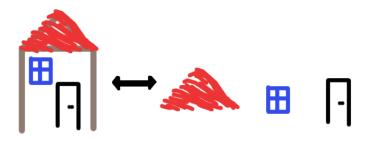
As the dimensionality of a representation increases, learning becomes less and less viable due to sparsity.

Dimensionality for collocation

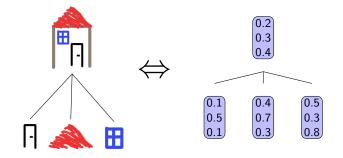
- One word per entry: Size of dictionary (small)
- One sentence per entry: Number of possible sentences (infinite)
- \Rightarrow We need a different method for representing sentences

Deep Learning for Language

Learning a hierarchy of features, where higher levels of abstraction are derived from lower levels.



A door, a roof, a window: It's a house



Composition

Lots of possible ways to compose vectors

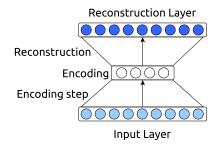
- Addition
- Multiplication
- Kronecker Product
- Tensor Magic
- Matrix-Vector multiplication
- ...

Requirements

Not commutative Encode its parts? More than parts? Mary likes John \neq John likes Mary Magic carpet \equiv Magic + Carpet Memory lane \neq Memory + Lane

Autoencoders

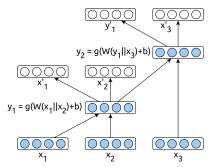
We want to ensure that the joint representation captures the meaning of its parts. We can achieve this by autoencoding our data at each step:



For this to work, our autoencoder minimizes an objective function over inputs $x_i, i \in N$ and their reconstructions x'_i :

$$J = \frac{1}{2} \sum_{i}^{N} ||x_{i}' - x_{i}||^{2}$$
(1)

We still want to learn how to represent a full sentence (or house). To do this, we chain autoencoders to create a recursive structure.



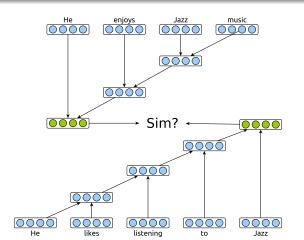
We use a composition function g(W * input + bias)

g is a non-linearity (tanh, sigm) W is a weight matrix b is a bias

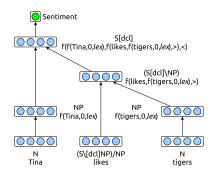
A different task: paraphrase detection

Q: Do two sentences (roughly) mean the same? "He enjoys Jazz music" \equiv "He likes listening to Jazz" ?

A: Use deep learning to find out!



Other Applications: Stick a label on top



1. Combine label and reconstruction error

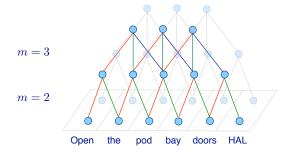
$$E(N, I, \theta) =$$

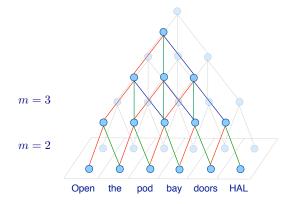
$$\sum_{n \in N} E_{rec}(n, \theta) + E_{lbl}(v_n, I, \theta)$$

$$E_{rec}(n, \theta) = \frac{1}{2} \left\| [x_n \| y_n] - r_n \right\|^2$$

$$E_{lbl}(v, I, \theta) = \frac{1}{2} \left\| I - v \right\|^2$$

2. State of the art for a number of tasks: Sentiment Analysis Paraphrase Detection Image Search





A: My favourite show is Masterpiece Theatre.

A: Do you like it by any chance?

B: Oh yes!

A: You do!

B: Yes, very much.

A: Well, wouldn't you know.

B: As a matter of fact, I prefer public television.

B: And, uh, I have, particularly enjoy English comedies.

Statement-Non-Opinion Yes-No-Question Yes-Answers Declarative Yes-No-Q Yes-Answers Exclamation Statement-non-opinion Statement-non-opinion

Dave: Hello HAL, do you read me HAL?

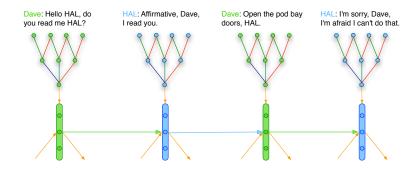
HAL: Affirmative, Dave, I read you. Dave: Open the pod bay doors, HAL.

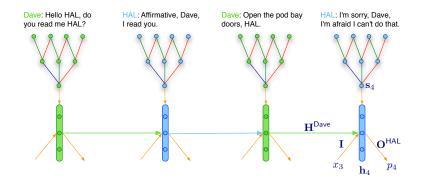
HAL: I'm sorry, Dave, I'm afraid I can't do that.

HAL: Affirmative, Dave, I read you.

Dave: Open the pod bay doors, HAL.

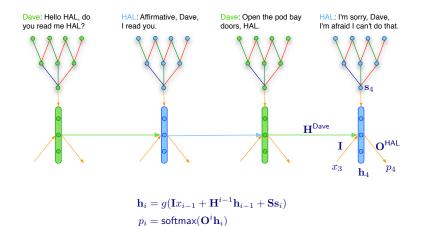
HAL: I'm sorry, Dave, I'm afraid I can't do that.





$$\mathbf{h}_{i} = g(\mathbf{I}x_{i-1} + \mathbf{H}^{i-1}\mathbf{h}_{i-1} + \mathbf{Ss}_{i})$$

$$p_{i} = \mathsf{softmax}(\mathbf{O}^{i}\mathbf{h}_{i})$$

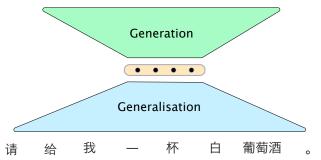


State of the art results while allowing online processing of dialogue.

2 From Vector Space Compositional Semantics to MT

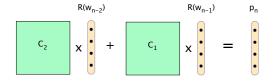
Generalisation in MT

i 'd like a glass of white wine , please .



Generation

A simple distributed representation language model:



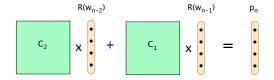
$$p_n = C_{n-2}R(w_{n-2}) + C_{n-1}R(w_{n-1})$$

$$p(w_n|w_{n-1}, w_{n-2}) \propto \exp(R(w_n)^T p_n)$$

This is referred to as a *log-bilinear model*.

Generation

A simple distributed representation language model:

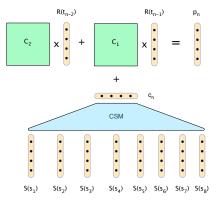


$$p_n = C_{n-2}R(w_{n-2}) + C_{n-1}R(w_{n-1})$$

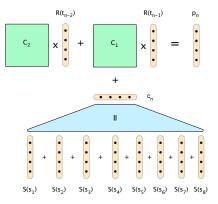
$$p(w_n|w_{n-1}, w_{n-2}) \propto \exp(R(w_n)^T \sigma(p_n))$$

Adding a non-linearity gives a slightly more general version of what is often called a neural, or continuous space, LM.

Conditional Generation

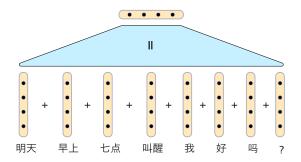


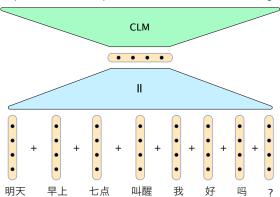
$$p_n = C_{n-2}R(t_{n-2}) + C_{n-1}R(t_{n-1}) + \operatorname{CSM}(n, \mathbf{s})$$
$$p(t_n|t_{n-1}, t_{n-2}, \mathbf{s}) \propto \exp(R(t_n)^T \sigma(p_n))$$



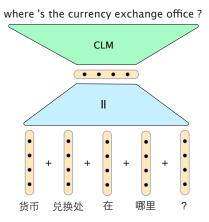
$$p_n = C_2 R(t_{n-2}) + C_1 R(t_{n-1}) + \sum_{j=1}^{|\mathbf{s}|} S(s_j)$$
$$p(t_n | t_{n-1}, t_{n-2}, \mathbf{s}) \propto \exp(R(t_n)^T \sigma(p_n))$$

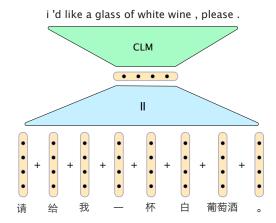
明天 早上 七点 叫醒 我 好 吗 ?

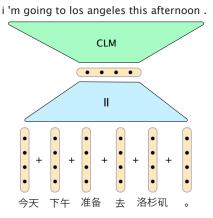


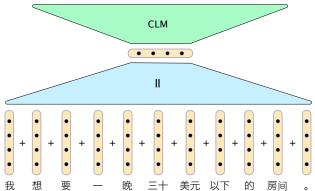


may i have a wake-up call at seven tomorrow morning ?

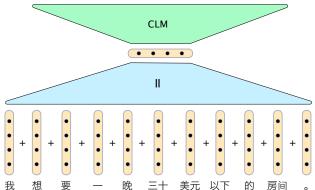








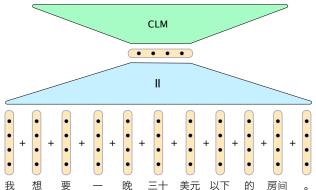
i 'd like to have a room under thirty dollars a night .



i 'd like to have a room under thirty dollars a night .

Rough Gloss

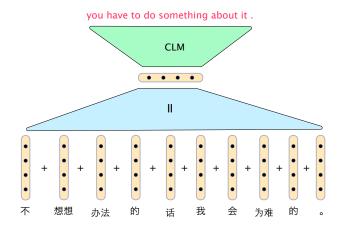
I would like a night thirty dollars under room.

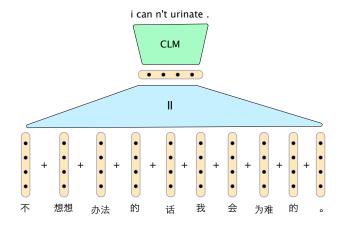


i 'd like to have a room under thirty dollars a night .

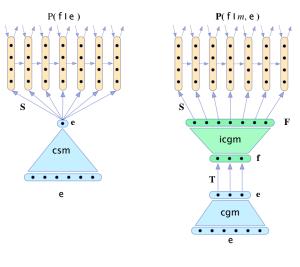
Google Translate

I want a late thirties under \$'s room.





Conditional Generation: A Convolution N-Gram Model



RCTM I

RCTM II

$En\toFr$	2009	2010	2011	2012
Knesser-Ney 5gram	218	213	222	225
RNNLM	178	169	178	181
IBM Model 1	207	200	188	197
fast_align (cdec/IBM Model 2)	153	146	135	144
RCTM I	143	134	140	142
RCTM II	86	77	76	77

Perplexity results on the WMT News-Commentary test sets.

$En\toFr$	2009	2010	2011	2012
Knesser-Ney 5gram	218	213	222	225
RNNLM	178	169	178	181
IBM Model 1	207	200	188	197
fast_align (cdec/IBM Model 2)	153	146	135	144
RCTM I	143	134	140	142
RCTM II	86	77	76	77

Perplexity results on the WMT News-Commentary test sets.

In k-best rescoring experiments the RCTM II model achieves similar Bleu scores to a MERT trained cdec baseline.

Summary

Advantages

- fast to train and decode, very compact models.
- a valid and tractable probability distribution over translations, making extensions easy to implement.
- distributed representations for words naturally include morphological properties.
- the conditional generation framework easily permits additional context such as dialogue and domain level vectors.

Challenges

- better conditioning on sentence position and length.
- handling rare and unknown words.

Funded studentships are available for strong students interested in pursuing graduate study in Machine Learning and Computational Linguistics

http://www.cs.ox.ac.uk/admissions/dphil/